MATHEMATICS

DPP No. 3

Total Marks: 29

Max. Time: 29 min.

Topics : Complex Number, Sequence & Progression, Permutation & Combination, Fundamentals of Mathematics, Quadratic Equation

Single choice Objective (no negative marking) Q. 1, 2, 3, 4 (3 r Short Subjective Questions (no negative marking) Q. 5, 6, 7 (3 r Match the Following (no negative marking) Q.8 (8 r 1. If z_1 , z_2 , z_3 are the vertices of the \triangle ABC on the complex plane and a $z^3 - 3\alpha z^2 + 3\beta z + \gamma = 0$ then the condition for the \triangle ABC to be equilate (A) $\alpha^2 = \beta$ (B) $\alpha = \beta^2$ (C) $\alpha^2 = 3\beta$	marks, 3 min.) [9, 9] marks, 8 min.) [8, 8]
$z^3 - 3\alpha z^2 + 3\beta z + \gamma = 0$ then the condition for the $\triangle ABC$ to be equilated	ero also the roots of the equation
V / 1 P	
2. The sum of first 100 terms common to the series 17, 21, 25, & 16 (A) 101100 (B) 111000 (C) 110010	6, 21, 26 is (D) 100101
3. How many seven digit number is to be formed using the digits 1 to 9 by 9	9 (without repetition) which is divisible
(A) $4.7!$ (B) ${}^{9}P_{7}$ (C) $7!$	(D) 9 ⁶
4. The complete solution set of the equation $x^8 - x^5 + x^2 - x + 1 > 0$ (A) $0 < x < 1$ (B) $-1 < x < 1$ (C) $x > 1$) is given by $(D) x \in R$.
5. If the inequality $\sin^2 x + a \cos x + a^2 \ge 1 + \cos x$ holds for any $x \in R$, fi	ind the range of values of a .
6. If α , β are the roots of the equation $ax^2 + bx + c = 0$. Find the $(a\alpha + b)^{-2}$, $(a\beta + b)^{-2}$.	quadratic equation whose roots are
7. Find the solution of the equation, $2\log_9\left(2\left(\frac{1}{2}\right)^x - 1\right) = \log_{27}\left(\left(\frac{1}{4}\right)^x - 1\right)$	$\left(\frac{4}{3}\right)^3$. Also state whether the solution
is rational or irrational.	
8. Match the column	
Column – I	Column – II
(A) The number of integral solutions of the inequality	(p) 4
$\frac{(e^x-1)(x-2)(x-1)^7}{(\ell nx+1)(x-3)(x-5)} \le 0$	
(C) Number of solution of sgn (sgn sin x) = 0 in $x \in [-2\pi, 2\pi]$	(r) 3
(D) Number of solution of x = tan x in $x \in (-\pi, \pi)$	(s) 1
	(t) 0

Answers Key

1. (A) **2.** (A) **3.** (A) **4.** (D)

5. $(-\infty, -2] \cup [1, \infty)$ **6.** $a^2c^2x^2 - (b^2 - 2ac)x + 1 = 0$

7. $-\log_2 3$, Irrational

8. $(A \rightarrow r)$, $(B \rightarrow r)$, $(C \rightarrow q)$, $(D \rightarrow s)$

